The Etosha Pan Halophytics ecoregion is the remnant of a large, inland Pliocene lake. Today, the Etosha Pan is a dry, saline desert. Normally, the cracked, whitish clay is split into hexagonal salt-encrusted fragments, and wildlife is sustained only by surrounding freshwater springs. These springs attract a diverse array of large mammals, especially during the dry season, making it a popular tourist destination. In wet years, when the Ekuma, Oshigambo and Omuramba Ovambo rivers receive sufficient rainfall, the pan is transformed into a shallow lake.
The mean annual rainfall of the Etosha National Park is about 430 millimeters (mm), varying from 419 mm at Okaukuejo, which lies on the western edge of the pan to 440 mm at Namutoni Fort, situated on the eastern edge. Most of the rain falls in late summer, in January through April, with February having the mean maximum rainfall (110 mm). There are large fluctuations from one year to another. In 1946, for example, the rainfall was 90 mm, but in 1950 it was 975 mm. Climatically there are normally three distinct seasons; hot and wet (January to April), cool and dry (May to August), and hot and dry (September to December). The mean maximum monthly temperature is 33 °C for summer and 28 °C in winter. The mean minimum temperature for summer is 17 °C and winter 7 °C. Peak temperatures, higher than 40 °C, are frequent in the hot season and 0 °C is the lowest temperature recorded. High velocity winds are common during the late winter. During this period, visibility on the pan can be restricted by the high dust content of the atmosphere.
The pan is subject to periodic, partial flooding during the rainy season. Direct rainfall accounts for only a small proportion of the pan’s water; three rivers supply the majority: the Ekuma, Oshigambo, and Omuramba Ovambo. The
Most of the time, however, the pan is a dry, saline desert, and water is found only in numerous waterholes surrounding the pan. These waterholes are fed by springs, of which there are three different types: contact, water-level and artisan. Contact springs are the most common and are found at the edge of the pan where water-bearing calcrete comes to an end and water flows out onto the surface because the underlying layers of clay are impermeable. Okerfontein, to the southeast of the pan, is a good example of a contact spring. Water-level springs are depressions, which cut below the water table, exposing water. These are dependent on the water table and hence are unreliable in terms of water supply. Artesian springs are formed when pressure from overlying rocks forces water to the surface from deeper lying aquifers. These springs are reliable and include Namutoni in the east and Aus to the south of the pan.
In Pliocene times, the
The Etosha Pan is almost devoid of macrophytic vegetation and is classified as a saline desert. The dominant plants are a thin layer of blue-green algae that cover the surface of the pan during the rainy season. Only a few macrophytes are found here, the major species being Sporobolus salsus. This halophytic (salt-loving) species colonizes extensive areas of the pan and offers excellent grazing to herds of springbok, gemsbok and wildebeest during the dry season. The pan has a fringe of halophytic vegetation consisting principally of Sporobolus spicatus, Odyssea paucinervis, and the small shrub Suaeda articulata. S. articulata is common in the brackish, low-lying areas fringing the pan and is also found clinging to hummocks on the pan itself. Atriplex vestita, Sporobolus tenellus, and S. virginicus are also present as are the occasional patches of annuals such as Chloris virgata, Diplachne fusca, Dactyloctenium aegyptium, and Eragrostis porosa. Sporobolus spicatus and Odyssea paucinervis show a cyclical succession, replacing each other as the pan is successively flooded or dries out.
When the pan dries out, a crust of saline soil is left on the surface but moist mud remains below the surface. This newly exposed surface is colonized by S. spicatus, which spreads rapidly by runners and produces a perennial sward. This persists during the most prolonged dry periods. O. paucinervis occurs with S. spicatus, but its tufts do not spread when the ground is dry. When the water rises, however, O. paucinervis colonizes vast areas of the pan that are shallowly flooded with warm water in which the salt crust is dissolved. Under these conditions, the S. spicatus mat rots away and O. paucinervis replaces it. On the wider fringes the vegetation changes to dwarf shrub savanna, composed mainly of the water thorn Acacia nebrownii, which forms thick stands in places. Monechma tonsum, M. genistifolium, Leucospaera bainesii, Petalidium engleranum, Salsola tuberculata, and the mopane aloe Aloe littoralis are also present, covering wide areas around the pan, particularly where the soil is brackish.
Open grasslands rise gradually away from the pan and sustain a wide variety of perennial and annual grasses, most of which fall into the "sweetveld" category. These provide grazing for a large number of herbivores. The common grass species are Cynodon dactylon, Eragrostis micrantha, E. rotifer, Diplachne fusca, and Chloris virgata. The grasslands extend to the north of the pan where they are known as the Adoni flats. To the south and west of the pan Colophospermum mopane is the dominant tree species. To the east, sandveld vegetation encroaches, and it is here that bigger and more varied tree species, such as Terminalia prunoides, Lonchocarpus nelsii, and tamboti Spirostachys africana may be seen together with the mopane. The attractive makalani palm Hyphaene ventricosa is found all around the pan, particularly in the west, often forming clumps around the waterholes.
In contrast to the desolate pan, the waterholes at the fringes of the pan (particularly in the south) are the sites of spectacular congregations of large ungulates. Zebra (Equus burchelli), blue wildebeest (Connocheatus taurinus), and springbok (Antidorcas marsupialis) are the most numerous ungulates at these waterholes. Other species include elephant (Loxodonta africana), giraffe (Giraffa camelopardus), black rhinoceros (Diceros bicornis), gemsbok (Oryx gazella), eland (Taurotragus oryx), kudu (Tragelaphus strepsiceros), steenbok (Raphicerus campestris), Damara dik dik (Madoqua kirki), and the black-faced impala (Aepyceros melampus petersi VU). Predators, such as lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta), and brown hyena (Hyaena brunnea) are found close to the game at the waterholes. Smaller predators found at the waterholes are black-backed jackal and bat-eared fox (Otocyon megalotis). These huge concentrations of game are found during the dry winter months and have made the
The
Another major threat to the ecology of the Etosha Pan is the introduction of pesticides and insecticides into the system. National campaigns to combat human and stock disease vectors and agricultural pests have had a negative impact on the aquatic invertebrate fauna of the Cuvelai system that feeds the Pan. The anti-malarial spraying campaigns in the Owambo area, north of the pan, annually applied 120,000 kilograms (kg) of 5 percent DDT to the walls of huts in the area. At least three chlorinated hydrocarbon insecticides, of which DDT was the most prominent, were found in the eggs of the lesser flamingo, and similar contamination was found in white pelican eggs.
Flamingo and white pelican colonies are also under threat from human disturbance. Sightseeing parties and low-flying aircraft cause the birds to become apprehensive and even to desert their eggs and young. The white pelican population is also in direct competition with people for food. Pelicans require 10% of their body weight in fish every day. A pair of white pelicans and their young (two chicks), for example, would require about 420 kg of fish to breed successfully. If the Cuvelai drainage system (particularly
Post a Comment